# Optical trends in Interconnects

#### **Ronald P. Luijten**

Manager high speed switching group

IBM Zurich Research Laboratory, Rüschlikon, Switzerland



# My car story





**SOS7 – March 6<sup>th</sup> 2003** 

www.zurich.ibm.com

## Our Zurich lab research activities



#### ... relevant to this audience





#### **Lessons learned**



## FoM = Gbps / Watt \* Inch<sup>3</sup>

PRIZMA-5 30 W/15W

PRIZMA-4 24 W/10W

PRIZMA-3 15 W/5W

PRIZMA-2 10 W/1.5W

PRIZMA 10 W/ 1.5W

#### **Lessons learned (2)**



\$ / Gbps also counts...

Stick with CMOS

Do not run at highest clock speed...

#### **Board attenuation**



#### Attenuation vs. bit rate for various board materials



#### **Cable attenuation**



#### Attenuation vs. bit rate for various cable diameters



# **Optimizing power consumption**





## Opto-electronic link approach



#### Key Features

- Simple waveguide structures
- Potentially cheap and mass-producible
- Integrated passive alignment features
- Various compatible connectors (device-to-board, board-to-backplane, backplane-to-fiber)

SOS7 - March 6th 2003

www.zurich.ibm.com

Back-

#### observations



Optics – do NOT give bandwidth But give distance!

All optical components are there:

**VCSEL** 

**Detector** 

**Fiber** 

FR4 waveguide

Except cost effective packaging...!

# And all optical switching ??



Active optical switch element
Optical memory
Optical header processing

1/2

no

no

## **Concluding remarks**



## Optics coming intra-rack: power

Work needed in packaging

All optical switching: more time needed

Next gen interconnect Electronic processing Optical transport